
Table of Contents

Introduction ..2

Section 1 – Migrating from IIB to ACE .. 2

Section 2 – Installing IBM App Connect in a Kubernetes environment
 (AWS EKS) ..3

Section 3 – Here is the step-by-step process for installing IBM App
 Connect in a K8 environment using operator ...5

Section 4 – Creating an Ingress for external access to IBM App
 Connect instances ... 10

Section 5 – Deploy your integration ... 12

Section 6 - Conclusion ...16

About the author...17

prolifics.com
Prolifics is a digital engineering firm helping clients accelerate their digital transformation journeys.

A Prolifics How-To Guide
Migrating IBM Integration Bus to IBM App Connect

on Amazon EKS Platform Using Operators
By Raveendra Nanjundappa, Prolifics Integration Solution Architect

ACE Migration

https://prolifics.com/us/
https://prolifics.com/us/
https://www.linkedin.com/authwall?trk=bf&trkInfo=AQF91MqFKUxu8gAAAYqF96zgNagLjblARg2spW6O0-Kh45AK-UeOrgzhLgFr-889oi9H9dpRTFPijOTcA-4S2HoTSihTFONPfg9pXCh6OxzZbcQ8GGncLAzVH6ABQDc0i_rhdvA=&original_referer=&sessionRedirect=https%3A%2F%2Fwww.linkedin.com%2Fcompany%2Fprolifics
https://www.youtube.com/user/prolificstv

prolifics.com
Prolifics is a digital engineering firm helping clients accelerate their digital transformation journeys.

ACE Migration
Back to TOC

Introduction
Migrating IBM Integration Bus V10 development resources to IBM App Connect
Enterprise
As more and more corporations are moving towards cloud deployment, IBM has taken the right
step to enable its integration stack to be cloud native. One such integration component is IBM
App Connect Enterprise (ACE). IBM ACE is the one-stop solution to connect any application. In
this article we will get to know how to migrate IBM Integration Bus (IIB) to ACE on Kubernetes
platform, specifically the AWS EKS environment.

Section 1 – Migrating from IIB to ACE
There are 2 broader ways to migrate from IIB to ACE.

Method 1: One Application at a time
To do things one step at a time, take the IIB development resources from a branch in version
control and then deploy the artifacts from the ACE toolkit into the ACE runtime.

Method 2: Big bang approach

This method involves taking a backup of your existing IIB V10 deployment using the
mqsibackupbroker command that will generate a zip file, which can then either be used on
the same machine or moved to a different machine where you have ACE installed. With this
backup zip file you can run the mqsiextractcomponents command. This command takes the
information from the zip file and generates the artifacts that are required by ACE for placement
on its filesystem into a working directory. These artifacts can be placed under a standalone
integration server working directory, or, alternatively, into server directories for the use of
servers which are owned by an integration node.

2

https://prolifics.com/us/
https://prolifics.com/us/
https://www.linkedin.com/authwall?trk=bf&trkInfo=AQF91MqFKUxu8gAAAYqF96zgNagLjblARg2spW6O0-Kh45AK-UeOrgzhLgFr-889oi9H9dpRTFPijOTcA-4S2HoTSihTFONPfg9pXCh6OxzZbcQ8GGncLAzVH6ABQDc0i_rhdvA=&original_referer=&sessionRedirect=https%3A%2F%2Fwww.linkedin.com%2Fcompany%2Fprolifics
https://www.youtube.com/user/prolificstv

prolifics.com
Prolifics is a digital engineering firm helping clients accelerate their digital transformation journeys.

ACE Migration
Back to TOC

When the artefacts are migrated from IIB to ACE, configurations are migrated from IIB to ACE
equivalents. One of the most important components is IIB configurable services. These
configurable services control the dynamic connectivity to different systems, for example, FTP
servers, email servers, and SAP system, to name a few. There are no more configurable
services in ACE and these are replaced by equivalent policies in ACE. Another key aspect is
configuration of server itself. IIB server configuration is managed in BrokerRegistry, but in ACE,
server configuration is controlled using yaml file (server.conf.yaml).

Section 2 – Installing IBM App Connect in a Kubernetes environment (AWS EKS)
Let’s explain how to install the latest version of the IBM ACE using operators on an AWS
Kubernetes cluster and deploy an integration using it.

If you are using Red Hat OpenShift platform, it significantly reduces the effort of the
deployment process as it pre-integrates a large number of commonly used capabilities and
performs a number of common steps automatically. However, not all enterprises have
OpenShift available to them, and for that reason, IBM App Connect is designed and supported
to run on any major Kubernetes platform.

This section focuses on the steps required to perform IBM App Connect deployment on AWS
EKS using operators. To keep this to a reasonable length, it is assumed that the reader has
some familiarity with AWS and Kubernetes already.

Why operators?
The first technology used to simplify Kubernetes deployments was Helm. You can call Helm a
package manager for deploying apps onto Kubernetes platform. Helm provides templates for all

3

https://prolifics.com/us/
https://prolifics.com/us/
https://www.linkedin.com/authwall?trk=bf&trkInfo=AQF91MqFKUxu8gAAAYqF96zgNagLjblARg2spW6O0-Kh45AK-UeOrgzhLgFr-889oi9H9dpRTFPijOTcA-4S2HoTSihTFONPfg9pXCh6OxzZbcQ8GGncLAzVH6ABQDc0i_rhdvA=&original_referer=&sessionRedirect=https%3A%2F%2Fwww.linkedin.com%2Fcompany%2Fprolifics
https://www.youtube.com/user/prolificstv

prolifics.com
Prolifics is a digital engineering firm helping clients accelerate their digital transformation journeys.

ACE Migration
Back to TOC

the objects you need for the deployment. You could then simply provide a file containing values
such as name of the application, container image it needed to be built from, replication policy
and so on. This was the initial approach that was used for deployment, and you can of course
still use Helm charts to deploy integration servers.

However, Helm only gets us so far. It’s good for the initial deployment of something like an
integration server, and it can achieve basic updates. But you will quickly learn about the
shortcomings of Helm when you need to perform monitoring; continuous health checking of the
environment; maintaining and upgrading of integrations and the associated runtimes once
deployed; other lifecycle issues such as storage management; and more complex, multi-
container installations.

It’s good for the initial deployment of something like an integration server, and it can achieve
basic updates, but what about setting up monitoring ans continuous health checking of the
environment? How will it maintain and upgrade the integrations and the associated runtimes
once deployed, and other lifecycle issues such as storage management? What about managing
the more complex, multi-container installations?

This is where operators simplify things and overcome the shortcomings of Helm. This is in fact
the approach used behind all the native Kubernetes objects themselves, but it is possible to
extend the Kubernetes such that you can work with your own custom objects too, via the
standard Kubernetes API. You provide to the API a file describing the state you would like your
application to reach, and the operator works out how to turn that into required Kubernetes
objects.

The operator performs all the necessary work to bring an application to life and keep it running.
It can be made to do essentially anything required by the application – install it, upgrade it,
monitor it and so on.

Before you install the IBM App Connect Operator, you must set up the environment with
certificate management and Operator Lifecycle Manager (OLM) to manage the lifecycle of the
operator.

4

https://prolifics.com/us/
https://prolifics.com/us/
https://www.linkedin.com/authwall?trk=bf&trkInfo=AQF91MqFKUxu8gAAAYqF96zgNagLjblARg2spW6O0-Kh45AK-UeOrgzhLgFr-889oi9H9dpRTFPijOTcA-4S2HoTSihTFONPfg9pXCh6OxzZbcQ8GGncLAzVH6ABQDc0i_rhdvA=&original_referer=&sessionRedirect=https%3A%2F%2Fwww.linkedin.com%2Fcompany%2Fprolifics
https://www.youtube.com/user/prolificstv

prolifics.com
Prolifics is a digital engineering firm helping clients accelerate their digital transformation journeys.

ACE Migration
Back to TOC

Section 3 – Here is the step-by-step process for installing IBM App Connect in a K8
environment using operator
Supported operating environment for Kubernetes - The minimum requirements for installation
are as follows:

• The Kubernetes version of the cluster must be 1.23.x
• Only Linux 64-bit (x86-64) is supported
• Operator SDK 1.2.0 or later is required

Setting up your cluster
The first step is to create the EKS cluster in which you want to install IBM App Connect.

App Connect makes use of Kubernetes secrets. These secrets are stored in etcd and are not
encrypted by default. Enable the encryption of etcd data for your cluster.

Install the following tools on your local workstation to manage the cluster, containers and other
resources:

• AWS CLI: Download and install the command-line interface (CLI) tool for logging in to
your Kubernetes environment

• Kubernetes CLI (kubectl): Download and install the Kubernetes CLI to run commands against
your cluster

• Operator SDK: Download and install a supported version of Operator SDK, which is part of the
open source Operator Framework that provides tools for building and managing Operators

• Helm CLI: Download and install the Helm CLI if you want to use Helm (rather than other
available methods) to install an ingress controller. An ingress controller is required to expose the
deployed App Connect instances to external

Configure AWS CLI

$ aws configure
AWS Access Key ID [****************J74P]:
AWS Secret Access Key [****************D12u]:
Default region name [us-east-1]:
Default output format [json]:

For more information refer to AWS CLI documentation.

Create/update your EKS cluster configuration
Create a kubeconfig file that stores credentials for Kubernetes cluster on EKS.
$ aws eks update-kubeconfig --name <cluster-name>

Install certificate manager
Any communication to components that needs to be secured will require certificates.

The operator installation requires the Kubernetes certificate manager to generate and manage

5

https://prolifics.com/us/
https://prolifics.com/us/
https://www.linkedin.com/authwall?trk=bf&trkInfo=AQF91MqFKUxu8gAAAYqF96zgNagLjblARg2spW6O0-Kh45AK-UeOrgzhLgFr-889oi9H9dpRTFPijOTcA-4S2HoTSihTFONPfg9pXCh6OxzZbcQ8GGncLAzVH6ABQDc0i_rhdvA=&original_referer=&sessionRedirect=https%3A%2F%2Fwww.linkedin.com%2Fcompany%2Fprolifics
https://www.youtube.com/user/prolificstv
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html#cli-configure-quickstart-config

prolifics.com
Prolifics is a digital engineering firm helping clients accelerate their digital transformation journeys.

ACE Migration
Back to TOC

the TLS certificates that are essential for internal communication, and exposure of web user
interfaces. This will also be required later by the integrations that are deployed if they expose
for example HTTPS APIs.

“Cert-manager” is a Kubernetes add-on to automate the management and issuance of TLS
certificates from various issuing sources. Cert-manager is included in OpenShift, but in EKS it
has to be explicitly installed.

Install cert-manager using the following command:
kubectl apply -f https://github.com/cert-manager/cert-manager/releases/download/v1.8.0/cert-
manager.yaml

You can verify the cert-manager installation using:

kubectl get pods --namespace cert-manager

We also need to perform a patch to the cert-manager to ensure any auto-generated secrets
that store certificates are automatically removed when there are no longer any “owner
references.”

kubectl patch deployment \
 cert-manager \
 --namespace cert-manager \
 --type='json' \
 -p='[{"op": "replace", "path": "/spec/template/spec/containers/0/args", "value": [
 "--v=2",
 "--cluster-resource-namespace=$(POD_NAMESPACE)",
 "--leader-election-namespace=kube-system",
 "--enable-certificate-owner-ref"
]}]'

Install the Operator Lifecycle Manager (OLM)
The Operator Lifecycle Manager (OLM) is a fundamental part of the Operator Framework. It is a
Kubernetes service that looks after the operators (such as the IBM App Connect Operator). It
makes operators discoverable, ensures that installed operators are kept up to date and
manages their lifecycle.

Operator SDK is a pre-req for installing OLM. Ensure that this SDK is installed before proceeding
with OLM installation.

Run the following command to install OLM:

operator-sdk olm install

Verify the OLM installation:

kubectl get crds

Section 3 – Here is the step-by-step process for installing IBM App Connect in a K8
environment using operator
Supported operating environment for Kubernetes - The minimum requirements for installation
are as follows:

• The Kubernetes version of the cluster must be 1.23.x
• Only Linux 64-bit (x86-64) is supported
• Operator SDK 1.2.0 or later is required

Setting up your cluster
The first step is to create the EKS cluster in which you want to install IBM App Connect.

App Connect makes use of Kubernetes secrets. These secrets are stored in etcd and are not
encrypted by default. Enable the encryption of etcd data for your cluster.

Install the following tools on your local workstation to manage the cluster, containers and other
resources:

• AWS CLI: Download and install the command-line interface (CLI) tool for logging in to
your Kubernetes environment

• Kubernetes CLI (kubectl): Download and install the Kubernetes CLI to run commands against
your cluster

• Operator SDK: Download and install a supported version of Operator SDK, which is part of the
open source Operator Framework that provides tools for building and managing Operators

• Helm CLI: Download and install the Helm CLI if you want to use Helm (rather than other
available methods) to install an ingress controller. An ingress controller is required to expose the
deployed App Connect instances to external

Configure AWS CLI

$ aws configure
AWS Access Key ID [****************J74P]:
AWS Secret Access Key [****************D12u]:
Default region name [us-east-1]:
Default output format [json]:

For more information refer to AWS CLI documentation.

Create/update your EKS cluster configuration
Create a kubeconfig file that stores credentials for Kubernetes cluster on EKS.
$ aws eks update-kubeconfig --name <cluster-name>

Install certificate manager
Any communication to components that needs to be secured will require certificates.

The operator installation requires the Kubernetes certificate manager to generate and manage

6

https://prolifics.com/us/
https://prolifics.com/us/
https://www.linkedin.com/authwall?trk=bf&trkInfo=AQF91MqFKUxu8gAAAYqF96zgNagLjblARg2spW6O0-Kh45AK-UeOrgzhLgFr-889oi9H9dpRTFPijOTcA-4S2HoTSihTFONPfg9pXCh6OxzZbcQ8GGncLAzVH6ABQDc0i_rhdvA=&original_referer=&sessionRedirect=https%3A%2F%2Fwww.linkedin.com%2Fcompany%2Fprolifics
https://www.youtube.com/user/prolificstv
https://operatorframework.io/

prolifics.com
Prolifics is a digital engineering firm helping clients accelerate their digital transformation journeys.

ACE Migration
Back to TOC

Install the IBM App Connect Operator
Operator can be installed in either of these modes:

• A cluster-wide installation into all namespaces: In this mode IBM App Connect
Operator is installed into the operator’s namespace. The Operator can be installed only
once in the cluster with this mode. This mode is the default option and is the
recommended approach because it allows you to have a single point to control the
Operator. In this mode, the Operator will be available to all namespaces on the cluster
and can be used to deploy and manage App Connect instances or resources within any
namespace.

• Installation into a specific namespace on the cluster: In this mode IBM App
Connect Operator is installed into single namespace of your choice. Unlike cluster-wide
installation, Operator can be installed multiple times, across multiple namespaces, in the
same cluster and at different versions. Each Operator will be isolated to a single
namespace and can be used to deploy and manage App Connect instances within that
namespace only. Installing different versions of the Operator across namespaces is
strongly discouraged, because it can result in conflicts with the
CustomResourceDefinitions (CRDs) that are used to create App Connect resources.

Installation of the App Connect Operator itself involves three steps:

A. Create an OperatorGroup
B. Add App Connect to the operator catalog
C. Install the operator by creating a subscription

A. Create an OperatorGroup for the IBM App Connect Operator
The OLM runs with high levels of privilege within Kubernetes and can grant permissions to
operators that it deploys. An OperatorGroup provides a mechanism for controlling what
permissions are granted by OLM, and in which namespaces.

A single OperatorGroup must be created in each namespace that will contain operators. The
namespace for our operator will be ace-demo and we need to create an OperatorGroup within
that.

Create the app-connect namespace for our operator:
kubectl create namespace ace-demo

Create an OperatorGroup definition by creating a file named appconn-operator-group.yaml with
the following content:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: app-connect-operator-group
 namespace: ace-demo

7

https://prolifics.com/us/
https://prolifics.com/us/
https://www.linkedin.com/authwall?trk=bf&trkInfo=AQF91MqFKUxu8gAAAYqF96zgNagLjblARg2spW6O0-Kh45AK-UeOrgzhLgFr-889oi9H9dpRTFPijOTcA-4S2HoTSihTFONPfg9pXCh6OxzZbcQ8GGncLAzVH6ABQDc0i_rhdvA=&original_referer=&sessionRedirect=https%3A%2F%2Fwww.linkedin.com%2Fcompany%2Fprolifics
https://www.youtube.com/user/prolificstv

prolifics.com
Prolifics is a digital engineering firm helping clients accelerate their digital transformation journeys.

ACE Migration
Back to TOC

spec:
 targetNamespaces:
 -ace-demo
It is important that the namespace above matches with the namespace into which we’ll deploy
our integration.

Now create the OperatorGroup:
kubectl apply -f appconn-operator-group.yaml

B. Add IBM App Connect to the operator catalog
OLM doesn’t yet know the IBM App Connect operator exists, or where to get it from. We need
to create an entry in the OLM catalog by creating a CatalogSource object.

Create a file named appconn-catalog-source.yaml with the following content:

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: ibm-appconnect-catalog
 namespace: olm
spec:
 displayName: "IBM App Connect Operator Catalog k8S"
 publisher: IBM
 sourceType: grpc
 image: icr.io/cpopen/appconnect-operator-catalog-k8s
 updateStrategy:
 registryPoll:
 interval: 45m

Note that the namespace for the CatalogSource is always “olm.”

Now add it to the OLM catalog:
kubectl apply -f appconn-catalog-source.yaml -n olm

You can verify the catalog entry using:
kubectl get CatalogSources ibm-appconnect-catalog -n olm

C. Install the operator using a “subscription”
Kubernetes works “declaratively,” meaning you “declare” what you want, then it works out how,
and when to do it.

Installing an operator follows the same principle. You declare to the OLM that you would like it
to “subscribe” to a particular operator in the catalog. It then works on downloading the current
version of it and instantiating it. There are many advantages to this declarative approach. For
example, we can declare that we want to follow a particular “channel” of updates to the
operator, we might want every update, or just stable releases and so on. We can also declare
whether or not it should update the operator automatically or not.

8

https://prolifics.com/us/
https://prolifics.com/us/
https://www.linkedin.com/authwall?trk=bf&trkInfo=AQF91MqFKUxu8gAAAYqF96zgNagLjblARg2spW6O0-Kh45AK-UeOrgzhLgFr-889oi9H9dpRTFPijOTcA-4S2HoTSihTFONPfg9pXCh6OxzZbcQ8GGncLAzVH6ABQDc0i_rhdvA=&original_referer=&sessionRedirect=https%3A%2F%2Fwww.linkedin.com%2Fcompany%2Fprolifics
https://www.youtube.com/user/prolificstv

prolifics.com
Prolifics is a digital engineering firm helping clients accelerate their digital transformation journeys.

ACE Migration
Back to TOC

To create a subscription to the IBM App Connect Operator, create a file named appconn-
sub.yaml with the following contents:

As you already know, you can install the Operator into a single namespace or cluster wide.

• To install into a single namespace, replace namespaceName with the namespace that
you created earlier (ace-demo)

• To install cluster wide, replace namespaceName with operators

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: ibm-appconnect
 namespace: namespaceName
spec:
 channel: v9.2
 name: ibm-appconnect
 source: ibm-appconnect-catalog
 sourceNamespace: olm

Notice that we have subscribed to “v9.2” channel. This means we’re subscribing to a specific
version of the operator, which was correct at the time of this writing.

To install the operator, add the subscription:

kubectl apply -f appconn-sub.yaml

To verify that the operator has installed:

kubectl get csv

Note:

• Deploy License Service to track license consumption of IBM App Connect. For
compliance with the licensing requirements, ensure that License Service is deployed on
your cluster to monitor and measure license usage of App Connect.

• Obtain an entitlement key and create your IBM App Connect authoring and runtime
environments, and other resources. An entitlement key (supplied as a Kubernetes pull
secret) will be required to pull the software images from the IBM Entitled Registry

•

9

https://prolifics.com/us/
https://prolifics.com/us/
https://www.linkedin.com/authwall?trk=bf&trkInfo=AQF91MqFKUxu8gAAAYqF96zgNagLjblARg2spW6O0-Kh45AK-UeOrgzhLgFr-889oi9H9dpRTFPijOTcA-4S2HoTSihTFONPfg9pXCh6OxzZbcQ8GGncLAzVH6ABQDc0i_rhdvA=&original_referer=&sessionRedirect=https%3A%2F%2Fwww.linkedin.com%2Fcompany%2Fprolifics
https://www.youtube.com/user/prolificstv

prolifics.com
Prolifics is a digital engineering firm helping clients accelerate their digital transformation journeys.

ACE Migration
Back to TOC

Section 4 – Creating an Ingress for external access to IBM App Connect instances
At this point, the cluster is unable to receive requests from the outside world. To expose the
deployed instances of App Connect Dashboard, App Connect Designer, integration servers,
integration runtimes, and switch servers to external traffic, you need to define ingress rules that
route paths to the internal services and ports. Ingress is a Kubernetes service that exposes the
services in the cluster to the public or private network.
Points to remember:
• An ingress controller must be installed and running in your Kubernetes cluster.
• If you have deployed a switch server, you need to customize the ingress controller to enable

SSL pass-through for switch server interactions. A switch server enables you to run hybrid
integrations that interact with callable flows or with applications in a private network, so this
customization provides secure connectivity between the switch server and an external
integration server that acts as a switch client.

• For each App Connect Dashboard, App Connect Designer, integration server, integration
runtime, or switch server instance, you need to also create an ingress resource. This ingress
resource contains rules that define an externally reachable URL that you can use to access
the running service in the cluster.

Creating an ingress route for an App Connect Dashboard instance
Create a file named appconn-ingress-dashboard.yaml with the following contents:

kind: Ingress
apiVersion: networking.k8s.io/v1
metadata:
 name: <dashboardIngressName>
 namespace: <namespaceName>
 annotations:
 kubernetes.io/ingress.class: "nginx"
 nginx.ingress.kubernetes.io/backend-protocol: HTTPS
spec:
 tls:
 - hosts:
 - <dashboardHostPrefix>.mydomain.com
 rules:
 - host: <dashboardHostPrefix>.mydomain.com
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: <dashboardCRname>-dash
 port:
 number: 8300

Run the following command to create the ingress:
kubectl apply -f appconn-ingress-dashboard.yaml

10

https://prolifics.com/us/
https://prolifics.com/us/
https://www.linkedin.com/authwall?trk=bf&trkInfo=AQF91MqFKUxu8gAAAYqF96zgNagLjblARg2spW6O0-Kh45AK-UeOrgzhLgFr-889oi9H9dpRTFPijOTcA-4S2HoTSihTFONPfg9pXCh6OxzZbcQ8GGncLAzVH6ABQDc0i_rhdvA=&original_referer=&sessionRedirect=https%3A%2F%2Fwww.linkedin.com%2Fcompany%2Fprolifics
https://www.youtube.com/user/prolificstv

prolifics.com
Prolifics is a digital engineering firm helping clients accelerate their digital transformation journeys.

ACE Migration
Back to TOC

Creating an ingress route for a switch server
To expose a switch server to external traffic, you must create an ingress route immediately
after you create the switch server. This is because during its initialization, the switch server will
need to provide a TLS host name (defined in an ingress resource) in order to request a
certificate for this host. To prevent certificate-related errors from the ingress controller, the host
name in the generated certificate and the TLS host name that is defined in your ingress
resource must match.

Create a file named appconn-ingress-switch.yaml with the following contents:

kind: Ingress
apiVersion: networking.k8s.io/v1
metadata:
 name: <switchServerIngressName>
 namespace: <namespaceName>
 labels:
 appconnect.ibm.com/switch: <switchServerCRName>
 annotations:
 kubernetes.io/ingress.class: "nginx"
 nginx.ingress.kubernetes.io/backend-protocol: "HTTPS"
 nginx.ingress.kubernetes.io/ssl-redirect: "true"
 nginx.ingress.kubernetes.io/ssl-passthrough: "true"
spec:
 tls:
 - hosts:
 - <switchServerHostPrefix>.mydomain.com
 rules:
 - host: <switchServerHostPrefix>.mydomain.com
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: <switchServerCRName>-switch
 port:
 number: 4443
Run the following command to create the ingress:

kubectl apply -f appconn-ingress-switch.yaml

11

https://prolifics.com/us/
https://prolifics.com/us/
https://www.linkedin.com/authwall?trk=bf&trkInfo=AQF91MqFKUxu8gAAAYqF96zgNagLjblARg2spW6O0-Kh45AK-UeOrgzhLgFr-889oi9H9dpRTFPijOTcA-4S2HoTSihTFONPfg9pXCh6OxzZbcQ8GGncLAzVH6ABQDc0i_rhdvA=&original_referer=&sessionRedirect=https%3A%2F%2Fwww.linkedin.com%2Fcompany%2Fprolifics
https://www.youtube.com/user/prolificstv

prolifics.com
Prolifics is a digital engineering firm helping clients accelerate their digital transformation journeys.

ACE Migration
Back to TOC

The following diagram provides a summary of the activities and components we have deployed
in the EKS cluster.

This completes the installation of required App Connect components and we can move on to
deploying an actual integration.

Section 5 – Deploy your integration
Create the barauth configuration object
Create a text file named github-barauth.yaml with the below contents:

apiVersion: appconnect.ibm.com/v1beta1
kind: Configuration
metadata:
 name: github-barauth
 namespace: ace-demo
spec:
 data:
eyJhdXRoVHlwZSI6IkJBU0lDX0FVVEgiLCJjcmVkZW50aWFscyI6eyJ1c2VybmFtZSI6IiIsInBhc3N3b3JkIj
oiIn19Cgo=
 description: authentication for github
 type: barauth

12

https://prolifics.com/us/
https://prolifics.com/us/
https://www.linkedin.com/authwall?trk=bf&trkInfo=AQF91MqFKUxu8gAAAYqF96zgNagLjblARg2spW6O0-Kh45AK-UeOrgzhLgFr-889oi9H9dpRTFPijOTcA-4S2HoTSihTFONPfg9pXCh6OxzZbcQ8GGncLAzVH6ABQDc0i_rhdvA=&original_referer=&sessionRedirect=https%3A%2F%2Fwww.linkedin.com%2Fcompany%2Fprolifics
https://www.youtube.com/user/prolificstv

prolifics.com
Prolifics is a digital engineering firm helping clients accelerate their digital transformation journeys.

ACE Migration
Back to TOC

spec.data section is the base64 encoded string of authentication credentials since we are
pulling the bar file from github.

Apply the barauth configuration definition to Kubernetes:

kubectl apply -f github-barauth.yaml

Create an Integration Server for the simple integration
Deploy an App Connect integration server certified container with a github link to the BAR file
by creating a file named http-echo-service.yaml with the following contents:

apiVersion: appconnect.ibm.com/v1beta1
kind: IntegrationServer
metadata:
 name: http-echo-service
 namespace: ace-demo
spec:
 adminServerSecure: false
 barURL: >-
 https://github.com/amarIBM/hello-world/raw/master/HttpEchoApp.bar
 configurations:
 - github-barauth
 createDashboardUsers: true
 designerFlowsOperationMode: disabled
 enableMetrics: true
 license:
 accept: true
 license: L-KSBM-C37J2R
 use: AppConnectEnterpriseProduction
 pod:
 containers:
 runtime:
 resources:
 limits:
 cpu: 300m
 memory: 350Mi
 requests:
 cpu: 300m
 memory: 300Mi
 replicas: 1
 router:
 timeout: 120s
 service:
 endpointType: http
 version: '12.0’

Create the integration server:

kubectl apply -f http-echo-service.yaml

13

https://prolifics.com/us/
https://prolifics.com/us/
https://www.linkedin.com/authwall?trk=bf&trkInfo=AQF91MqFKUxu8gAAAYqF96zgNagLjblARg2spW6O0-Kh45AK-UeOrgzhLgFr-889oi9H9dpRTFPijOTcA-4S2HoTSihTFONPfg9pXCh6OxzZbcQ8GGncLAzVH6ABQDc0i_rhdvA=&original_referer=&sessionRedirect=https%3A%2F%2Fwww.linkedin.com%2Fcompany%2Fprolifics
https://www.youtube.com/user/prolificstv

prolifics.com
Prolifics is a digital engineering firm helping clients accelerate their digital transformation journeys.

ACE Migration
Back to TOC

Create ingress object
Our simple integration service receives requests over HTTP, and these may come from the
public internet. To enable a container to receive requests from outside of the EKS cluster, you
will need to create an ingress route.

Create a definition file named is-ingress.yaml with the following contents, replace <external-
hostname> with the correct value:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: http-echo-service-ingress
 namespace: ace-demo
 annotations:
 kubernetes.io/ingress.class: "nginx"
spec:
 rules:
 - host: <external-hostname>
 http:
 paths:
 - path: /
 pathType: ImplementationSpecific
 backend:
 service:
 name: http-echo-service-is
 port:
 number: 7800

Deploy the ingress object:

kubectl apply -f is-ingress.yaml

Test the integration
Verify the status of Integration Server pod and ensure that it is running:

kubectl get pods

Invoke the service using curl command using the URL you configured in the ingress definition:

curl -X POST http://http-echo-service-http-ace-demo. yyy.yyy.yyy.yyy.yourdomain.com/Echo

You should receive a response, letting you know that your request made it into the container
and returned back.

Example use case of deploying integrations using pipeline
Coming to deployment of integration, you can follow different methods depending on devops
process adopted in your enterprise. Below is one of the ways you can automate the deployment
of App Connect workload. This method uses the combination of Jenkins and Argo CD along with
nexus repo. You can visualize the process from the diagram below:

14

https://prolifics.com/us/
https://prolifics.com/us/
https://www.linkedin.com/authwall?trk=bf&trkInfo=AQF91MqFKUxu8gAAAYqF96zgNagLjblARg2spW6O0-Kh45AK-UeOrgzhLgFr-889oi9H9dpRTFPijOTcA-4S2HoTSihTFONPfg9pXCh6OxzZbcQ8GGncLAzVH6ABQDc0i_rhdvA=&original_referer=&sessionRedirect=https%3A%2F%2Fwww.linkedin.com%2Fcompany%2Fprolifics
https://www.youtube.com/user/prolificstv

prolifics.com
Prolifics is a digital engineering firm helping clients accelerate their digital transformation journeys.

ACE Migration
Back to TOC

1. Developers will be using Jenkins as a Continue Integration (CI) to build the code

after committing changes into the GiHub code repository

Jenkins:
2. Pull the code from GitHub repository
3. Build the bar file(s) using ANT script
4. Push the bar file(s) into Nexus Repository with version
5. The Workforce/Administrator/Operations team will commit the

manifest/configuration resources such as Custom Resource Definition (CRD),
server configuration, etc., into GitOps Repository with the version

Argo CD:
6. Continuously sync and pull the changes.
7. Deploy the changes into AWS EKS cluster.
8. Pull the bar file(s) from Nexus Repository during Kubernetes Pod Container Initialization

1. Developers will be using Jenkins as a Continue Integration (CI) to build the code

after committing changes into the GiHub code repository

Jenkins:
2. Pull the code from GitHub repository
3. Build the bar file(s) using ANT script
4. Push the bar file(s) into Nexus Repository with version
5. The Workforce/Administrator/Operations team will commit the

manifest/configuration resources such as Custom Resource Definition (CRD),
server configuration, etc., into GitOps Repository with the version

Argo CD:
6. Continuously sync and pull the changes.
7. Deploy the changes into AWS EKS cluster.
8. Pull the bar file(s) from Nexus Repository during Kubernetes Pod Container Initialization

15

https://prolifics.com/us/
https://prolifics.com/us/
https://www.linkedin.com/authwall?trk=bf&trkInfo=AQF91MqFKUxu8gAAAYqF96zgNagLjblARg2spW6O0-Kh45AK-UeOrgzhLgFr-889oi9H9dpRTFPijOTcA-4S2HoTSihTFONPfg9pXCh6OxzZbcQ8GGncLAzVH6ABQDc0i_rhdvA=&original_referer=&sessionRedirect=https%3A%2F%2Fwww.linkedin.com%2Fcompany%2Fprolifics
https://www.youtube.com/user/prolificstv

prolifics.com
Prolifics is a digital engineering firm helping clients accelerate their digital transformation journeys.

ACE Migration
Back to TOC

Section 6 - Conclusion
That’s it – you have deployed a simple flow from an IBM Integration Bus environment into IBM
App Connect container on Amazon EKS.

Here is the holistic view of IBM integration stack deployed onto AWS EKS platform and how
they inter-operate.

The steps would largely be the same for any non-OpenShift Kubernetes environment such as
the Azure Kubernetes service (AKS), or indeed a self-managed non-OpenShift Kubernetes
cluster.

16

https://prolifics.com/us/
https://prolifics.com/us/
https://www.linkedin.com/authwall?trk=bf&trkInfo=AQF91MqFKUxu8gAAAYqF96zgNagLjblARg2spW6O0-Kh45AK-UeOrgzhLgFr-889oi9H9dpRTFPijOTcA-4S2HoTSihTFONPfg9pXCh6OxzZbcQ8GGncLAzVH6ABQDc0i_rhdvA=&original_referer=&sessionRedirect=https%3A%2F%2Fwww.linkedin.com%2Fcompany%2Fprolifics
https://www.youtube.com/user/prolificstv

prolifics.com
Prolifics is a digital engineering firm helping clients accelerate their digital transformation journeys.

ACE Migration
Back to TOC

About the author

Raveendra Nanjundappa, Prolifics Integration Solution Architect, has more than 10
years of experience in the IT industry executing various roles – Solution/Integration Architect,
Technology Specialist, Senior Consultant, and Technical/Project Lead with specialization in
middleware and Enterprise integration/SOA. His expertise is in architecting, designing and
building middleware messaging and SOA/Integration solutions using IBM WebSphere product
suite. This includes Websphere MQ, IBM Integration Bus/ Websphere Message Broker, IBM
Datapower, Websphere Service Registry and Repository (WSRR), Websphere Extreme Scale
(WXS), and more. Nanjundappa has experience of working in various industries, such as
banking, manufacturing, retail and health care.

 About the author

17

https://prolifics.com/us/
https://prolifics.com/us/
https://www.linkedin.com/authwall?trk=bf&trkInfo=AQF91MqFKUxu8gAAAYqF96zgNagLjblARg2spW6O0-Kh45AK-UeOrgzhLgFr-889oi9H9dpRTFPijOTcA-4S2HoTSihTFONPfg9pXCh6OxzZbcQ8GGncLAzVH6ABQDc0i_rhdvA=&original_referer=&sessionRedirect=https%3A%2F%2Fwww.linkedin.com%2Fcompany%2Fprolifics
https://www.youtube.com/user/prolificstv

